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Abstract. A description of a non-Riemannian geometry is given in which use is made of a 
pair of affine connections to characterise the manifold. This approach is used to discuss the 
‘Palatini’ variational principles of general relativity and the non-symmetric unified theory. 
In the latter case, an identification of the metric tensor is generated by the variational 
principle. The implications of the adoption of this identification are discussed. 

1.. Introduction 

Throughout its history, the well-known non-symmetric unified field theory has 
encountered many difficulties, the great majority of which have arisen simply because of 
the uncertainty which attends the connection of the formalism of the theory with 
physics. That is to say, the concepts upon which the theory is founded appear to give no 
indications as to which of the tensors used in its construction correspond to the physical 
electromagnetic and gravitational fields. 

In the electromagnetic case, the absence of any analogue of the principle of 
equivalence implies that we have no way, a priori, to relate this field to any particular 
geometrical quantity. This appears to necessitate additional postulates-exterior to the 
basic concepts of the theory-which enable us to relate the mathematics to our 
assumption that the electromagnetic field should be associated with an antisymmetric 
second-rank tensor. In short, we have no choice but to postulate that some quantity 
within the theory shall play the role of the electromagnetic field tensor. Our only guides 
in making this otherwise arbitrary choice are our expectations as to the form that the 
description of electromagnetism should take. For example, we anticipate general field 
laws which resemble, in some manner, the Maxwell or Born-Infeld equations. But in 
that these expectations are based on a range of experimental data which is, according to 
the theory itself, by no means exhaustive, this is plainly a somewhat dubious procedure. 
In the electromagnetic case, unfortunately, no alternative suggests itself. But this is not 
true of the gravitational case. 

The situation of gravitation is quite different. Here we have, a priori, good reason to 
believe that gravitation is an expression of the variations of the metric of space-time 
(see § 2 below). This definite, pre-assigned geometrical role for the gravitational field 
leads us to hope that in this case it will not be necessary to postulate an ‘identification’. It 
is quite possible to discuss non-Riemannian geometry in general without assuming any 
particular relationship whatever between the metric and the affine connection. Thus, it 
is possible to construct a geometrical variational principle, involving the metric, before 
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the dependence of the latter on the connection of the manifold is known. We may then 
try to use the variational principle to derive the form of this dependence. This, indeed, 
is precisely what is done in the case of the application of the well-known Palatini method 
of variation to general relativity. In the non-symmetric theory, where the fundamental 
tensor g,, # gy, and the metric tensor U,,, = a”, are not assumed to coincide, it is usual 
to use the Palatini technique only to relate g,,, to the affine connection, FEv. In the 
present work we shall show that this technique may also be used to relate U,,, to rzv. 
Our attempt is therefore no more than a logical extension of the Palatini approach. 
Furthermore, it enables us to avoid the situation, discussed earlier, which obtains in the 
electromagnetic case. Lastly, there is of course an aesthetic appeal in a method which 
enables us to minimise our hypotheses. 

2. Non-Riemannian geometry 

From a geometrical point of view, the formalism of general relativity may be extended 
in two directions. Firstly, we can admit torsion (that is, allow the connection to be 
non-symmetric); secondly, we may allow the covariant derivative of the metric tensor to 
differ from zero. Wider generalisations are possible, but unnecessary for our purposes. 

This broad non-Riemannian framework is not of value in general relativity, for the 
following reason. If we assume, as is natural, that the absence of a field corresponds to a 
Minkowskian geometry, it follows that the geometry of space-time is locally 
Minkowskian as viewed from a ‘freely falling’ frame of reference. In that frame (and 
therefore in every frame), the torsion is zero and the metric is a covariant constant. As 
this is so at any point, we are brought back to the Riemannian case. Thus we see that, 
essentially because of the principle of equivalence, gravitation is indeed specifically 
related to the metric tensor. 

Let a,, be the metric tensor, and V’ an arbitrary vector. Upon parallel transport, 

sv, = - v m s x p r ; 4 , ,  (1) 

and one may easily verify that if V ,  is the corresponding covariant derivative operator, 
the squared length of V/” changes according to 

S(a,,.V’” VU) = (Vaa,, ,)sXa vw vu. ( 2 )  

Now let us consider the parallel transport of an arbitrary covariant vector U,. The 
equation 

su, = +sXau,r& (3) 

is customarily derived from (1) by means of a demand that scalars should be invariant 
upon parallel transport. But of course lengths are scalars; yet, according to ( 2 ) ,  they are 
not preserved upon transport. It is therefore not reasonable to maintain (3) in the 
context of these general geometries. 

A more logical procedure is as follows. We shall replace (1) and (3) by 
- 

sv, = - S X “ V + &  su, = +sxau,r:, (4) 
+ - 

where, in general, r:,, and rEv are two different affine connections. (The + and - 
notation should not be confused with Einstein’s (1954) conventions, of which we make 
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no use here.) Then, for the scalar U,VW we find 

S(U&VW) = w,~pSx=u,vp 
where 

w,”, = r a w p  - r ,NLP. (6) 

This quantity is a tensor. Upon parallel transport around an infinitesimal circuit 
characterised by the antisymmetric tensor A“’, V” and U, undergo changes 

- 
AV” = 6P,p”VPAu’ AU,=-RpUJIPUpAOLP, (7 ) 

where? 
+ + + +  
R ~ ~ , ~  = 2 a[PraT, +2rrplElr:l, 

- 
and similarly for RpacrP. Then also 

A(U,V‘”) = ( f ; p a , P  - RPapp)VWUUpAL2’. 
- 

The bracketed expression evidently plays the role of a ‘curvature’ for scalars. 

vectors U,, V + ,  to 
If a metric is now introduced, equation ( 2 )  may be generalised, for a pair of arbitrary 

+ 
S(a,,U’V”) = (V,a,,)SxaU”V” (9) 

+ + 
where V, corresponds to rzv. The latter is used, of course, because U” and V ”  are 
contravariant vectors. Using a,” and its inverse a,“ to lower and raise indices, we have 
also 

S(a &”U, Vu) = (V,a ” ” ) a x a  U, V,,. (10) 

VUaFu = W,,, = a,’ ~2~ (11) 

V,a  ”” = - W,”” V,a,,, = - Wa,”. (12) 

- 

Comparison of (9) and (10) with ( 5 )  yields 
+ - 

V,a ILv = w,”” = a ”’ Way,,. 

Assuming the covariant constancy of S : ,  we obtain 
+ - 

Letting a be the determinant of a,“, 

6,J-a=1J-aWa@, v, J-a = -3J-a W,”,. (13) 
Let us now expand the covariant derivative operator in the first equation (1 l ) ,  and 

substitute for W,’” from (6). Then 
- A  + 

a,a,,, - a a u k w - a W A k u =  acLA(rpu-r~y)  
or 

+ - 
aaaWv -ahvrL--,hr:v= 0. (14) 

It must be clearly understood that we tave made no hypotheses or specialisations 
whatever in arriving at (14). The fact that r:, and ?:” differ (which is bound up with the 
fact that lengths are distorted under the action of parallel transport) is an expression of 
a_n essentially metric property of the manifold. From the mere definitions of Y z u  and 
rz,, together with (2), it must follow that given these two connections, the covariant 

t Square brackets denote the antisymmetric part. 
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derivative of a,, is essentially determinate. This is expressed by (14). We repeat that 
(14) is a consequence of our definitions, and not of any assumption whatever. It must 
hold in every geometry. If, of course, r:, and r;, are equal, then according to (6 )  W,”, 
is zero. This agrees with (14), for in that case this latter is 

+ - 

+ 
Vas,,, = 0 

and according to (1 1) this again means that W,,, is zero. In other words, Wu,, is zero if 
and only if a,, is a covariant constant. 

3. Application: the Palatini method in general relativity 

In this section, we reformulate the general relativistic ‘Palatini method of variation’ in 
terms of the approach outlined in the preceding section. In a general non-Riemannian 
geometry, the metric and the affine connections are independently defined and 
independently meaningful quantities. However, the variational principle of general 
relativity is constructed from a mixture of these; if, therefore, it is to constitute an 
intelligible restriction on possible gravitational fields, there must be found some definite 
relationship between the metric and the affine quantities. This relationship may be 
derived from the variational principle itself by permitting independent variations of a,, 
and r;,. The initial geometry is assumed to be torsionless but not Riemannian. 

In seeking to generalise the usual equation 

S R J-a d a= 0, I 
where R is the curvature scalar, we shall be guided by th: realisation - that there can be 
no justification whatever for giving preference to one of I?;,, FE, at the expense of the 
other. Therefore, we shall take 

Great caution must be exercised here as to the choice of variational parameters. It - is 
clear, from (14), that it will not be possible to vary all three of a,,, r;v and r:v 
indepfndently. We - can only permit the independent variation of either of the pairs 
(a,”, r;”) or (a,”, rz,). It clearly does not matter which pair is chosen; we arbitrarily 
take the first. + 

We begin by varying rU,, while keeping a,, fixed. Then (14) enables us to calculate 
the variation suffered by rzu. For, by (14) (keeping a,,, fixed), 

- 

Let 
well-known formula 

be any connection, and R,, the corresponding Ricci tensor. Then we have the 

SR,, = 2v,,sr:,, + 2r;,,,sr:,, 
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In the present section, we shall take all connections to be symmetric. Thus 
c + +  

SR,, = 2V~~Sr:lh. 

Denoting 
= J-a a"", 

we have from (15) 

The variations are assumed to vanish on the surface of the region of integration, and this 
leads in the usual way to 

Then 

+ , d U A  = J-a ($W"* - W,"". 
+ - 

As both Y z u  and are symmetric, it follows from (6) that 

w,*, = w,*,. 

$,&,A = -f J-a W,~LA. 

Hence (1 8) is 
- 

Applying these results, including (19), to (17), one finds after some calculation that 

wUuA + 48: w,"~ + a w,", - 2 wepA = 0. (20) 

Contracting on a and p, we obtain 

4 w,"̂  = 0. 

w,ps = 0. (21) 

Substituting this into (20), we have 

By (6), this means that our two connections coincide; accyrding to - (1 l ) ,  the metric is a 
covariant constant. Thus, if I?;, is the common value of Yz,, and rEv, 

aaawu - a P J L  - a r P r L  = 0, 

and this establishes the desired relationship between a,, and rzu. The geometry is of 
course Riemannian. The variation of acrv now yields the standard field equations of 
general relativity. Evidently, then, the Palatini method is not upset when we make the 
generalisations necessitated by the 'two-connection' approach. 
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Itmay be felt that the adoption of a variational principle which is symmetrical in Y z v  
and r’zu will inevitably lead to (21). But were this comment valid, it would apply also to 
the case in which the connections are not symmetric. In that case, however, it may be 
shown that (20) is replaced by 

1 0  wUuA + $8; wuUp + a ” wUuU - wUPA - w”~ = 0. 

As we no longer have (191, we cannot deduce (21) from this. Generally speaking, the 
symmetry of the Lagrangian would lead us to anticipate that the two connections will 
satisfy the same equations, but it is frequently far from obvious that these equations 
cannot have two distinct solutions. (For example, given aWu, there is no unique 
connection satisfying 

aUaCLY - a P X ,  - a;,r‘P,, = 0 

unless YE, is symmetric.) 

4. A ‘two-connection’ approach to the non-symmetric unified field theory 

The non-symmetric theory, with the basis of which we assume the reader to be familiar, 
involves the abandonment of the condition of symmetry imposed on the general- 
relativistic fundamental tensor and affine connection. The variational principle is a 
natural extension of the Palatini principle. The variation of the affine connection yields 
a relationship between it and the fundamental tensor g,, # g,,, which latter bears no 
immediate relationship to the metric tensor aFU. In the standard account, the varia- 
tional principle does not provide a means whereby the metric tensor may be related to 
the affine connection. 

Klotz (1978b) has postulated that the metric tensor should be calculated from the 
equation: 

where f’;,, is discussed below. It is of central importance that this ‘identification’ of the 
metric tensor is not compatible with every solution of the field equations of the theory. 
Like the latter, then, it constitutes a restriction on the range of geometries available to 
space-time, and is itself akin to a field equation. The possibility that the actual metric 
identification may be of this type clearly adds weight to our claim that it should, like the 
other field equations, be derived from the variational principle. 

aaaWv - a,f%,, - a,,Cau, = 0, (22) 

For the latter we take 

S I + & ) g @ ” C g  dR = 0, 
+ - 

as the natural generalisation of (15). Here, because gCLy, YEu and r‘z, are not related a 
priori by an equation of the form (14), it becomes possible to vary all three sets of 
quantities independently. Thus 

t Round brackets denote the symmetric part. 
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(The fact that there is no a priori relationship between r;,,, r;, and g,, is a result of the 
fact that g,, is not endowed with any direct geometrical meaning. Its purpose is to 
restrict the excessive number of ‘degrees of freedom’ which the general geometry 
possesses. See Klotz (1978b).) 

The standard procedures may now be applied to the above equations (see 
Schrodinger 1950). If we define 

+ -  

t +  - - - 
r;”= r;,+$,a; F;,= r;,+$r,a; (24) 

r, = r ~ ,  

a p g , Y - g P Y r ~ , - g ~ p r ~ p = o  apg,, - g,,?;, - g, ,kp  = 0 (25) 

a~(i[,,]+d[,,]) + a , ( R [ v ~ ] + & ~ ~ )  ~ , ( R [ A , ~ + ~ [ A , I )  = 0 

where 
- -  + +  
r, = r ~ , ,  

then we obtain 
t t 

and also 
t - 

t 
R(,,) + g(ILy) = 0 

t 
(26) 

t z  r, =r, = o .  
t t 

Here R,, is the Ricci tensor formed from r;,, and so on. 
Now Tonnelat (1955) has shown that, in general, equations of the form (25) have a 

unique solution for the affine connection in terms of the fundamental tensor gF,. Thus it 
follows from (25)  that 

t r  r* = r e  ,y ( = f p )  ,U 9 (27) 
and then the field equations become 

This is the standard set. We have therefore demonstrated that, as in the case of general 
relativity, the variational principle of the non-symmetric theory may be adapted to the 
requirements of the ‘two-connection’ approach, without affecting the character of the 
resulting theory. But in addition to this, we have the crucial result (27). If this is 
substituted into (14) (which, as we know, holds quite generally), there results 

arra,” - a,,fPa, - a,,f:, = 0.  (29) 

This we now regard as a set of differential equations for the metric tensor. In other 
words, (29) is our metric identification. It arises from (25) through (27); evidently, then, 
we have achieved our aim of using the variational principle to relate not only g,,, but 
also all”, to rz,. 

Many other solutions of the problem of ‘identifying’ the metric (that is, of establish- 
ing a relationship between the metric and affine properties of the relevant manifold) 
have been proposed (see, for example, Wyman (1950) and Schrodinger (1947)). Of 
particular interest, because of its close similarity to (29), is the already mentioned 
suggestion (22) due to Klotz (1978b). After demonstrating the integrability of (22), 
Klotz shows that, in the case of Papapetrou’s (1948) spherically symmetric static 
fundamental tensor, it eliminates all but two of the corresponding solutions due to 
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Vanstone (1962). One of these, according to the identification of as the elec- 
tromagnetic field (due to Gregory and Klotz (1977)), is a spherically symmetric 
(Coulomb) electric field; the other is a spherically symmetric magnetic solution. 

In the sections which follow, we perform the analogous calculations for the 
condition (29). 

5. The integrability of the metric condition 

In this section we generalise the proof of inteErability given by Klotz for (22). We begin 
by establishing an identity for the curvature RFYUP corresponding to a f ‘ zu  which satisfies 
(29). If 6 ,  is the corresponding covariant derivative operator, and V,, any vector, we 
have the well-known result 

1 -  v[av,,v,, = -:dap,PVp - Ffmp,VpV,,. 

Applying this to the metric tensor aWu, one finds 
1‘ 1 ”  “ 1  

V [ u V p p z , u  = -iRapFPapv - iR,puPa,, - fLpj?,a,,. 

But (29) states 

$,a,, = 0 ,  

so that we have from (30) 
“ 

0 = Rafi,” + Rapuw. (31) 
Now by differentiating (29) one may easily show that 

ap aaalrv = a A , , F ~ p ~ ~ , + a p A F ~ Y F ~ , , +  apv a,F:,+a,,f~,f:,+a,,f~,f:.+a,, a p F g Y .  
Observing that the sum of the second and fourth terms is symmetric in a and p, one sees 
that 

1 “ 
a lp  = apvRpa/ + a,LpRp,VP 

a[pau~a,u = R13a,v + Rpav,,. 

a[paUla,u = o 

or 
1 “ 

By (31), then, the integrability condition 

is assured. The situation is precisely the same as for the Klorz condition (22). 

6. The spherically symmetric solutions 

As has already been mentioned, neither (22) nor (29) is compatible with every solution 
of the usual field equations. In the former case, Klotz (1978b) has calculated, for the 
spherically symmetric static solutions, the conditions which must be satisfied if a metric 
is to be generated. Here we shall modify these calculations so as to deal with (29). 

Papapetrou’s spherically symmetric, time-independent fundamental tensor is 

g 2 2  = -p = ~3~ cosec2 8 g11= -ff 

g44  = fl g23 = -g32 = f sin 8 g 1 4  = -g41  6.l (32) 
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where CY, P, U, f and w depend on x 1  = r only. Define 

U = 1 -6J2/CYu p 2 =  f 2 + P 2  y=uu 

x = p  / a  A’ = p ’ / p  tan B = B/f (33) 
2 

where the prime denotes differentiation with respect to r. Tonnelat (1955) has shown 
that the non-zero components of f z v  are for this case given by 

f;1= a’/2a 

fk4 = (u/2a)(ln y ~ ) ’  

= Pi3 cosec’ 8 = (fB’-PA’)/2a 

fz3 = -sin e cos e 
f&) =cot e f:12) = f:13) = &A’ 

Here the coordinate system is xcL = (r&bt). 

write out the forty equations 
Taking the case for which a,, is diagonal and dependent only upon r and 8, one may 

‘ 
aaa,’” = apvrPa, + a , x V  

in full. In doing this, we observe the following important fact about the surviving 
components (34): that if a certain lower index pair occurs among the symmetric set, it 
does not occur among the antisymmetric set and vice versa. (For example, f & )  f 0 but 
f:23] = 0, and f & 1 ]  # 0 but f$1) = 0.) This implies that the conditions 

(111 = aga aZ2 = u~~ cosec e = bop 2 

a 4 4  = Y / Y o  f:12P22 + f:2a11= 0 (35) 

f ? 1 4 ) a 4 4  f F i 4 a l ,  0 f:13)a33 + f&al ,  ‘L 0 i(t34) = 0 

derived by Klotz are left intact. These are now supplemented, however, by a set 
resulting from the inclusion of the antisymmetric part of the connection: 

f:41] = f F 4 2 ]  = f f 3 4 ]  = 0 

a22f?31]+ a l l f f 3 2 ] =  0 (37a) 

a33f:l2]+ u 2 2 f f 1 3 ] =  0. (37c) 

(36) 

a33f?211+ a 1 1 F i 2 3 1 =  0 (37b) 

From the Tonnelat solution (34), it follows that any one of (36) implies the other two, 
while it is clear that any two of (37u), (37b), (37c) imply the third. Quoting from (34) 
and (35), we have 

2 
f f 1 3 1  = f:211 sin2 e aZ2 = a33 cosec 8. 

Substitution of these into (37c) shows the latter to be an identity. Our remaining 
additional conditions are now 

p:41] = 0 a33f?211= a l l f :321 .  (38) 
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By means of appropriate substitutions from (34) and (35), the second of these may be 
shown to be 

(aoP + bop)B’+ aofp’lp = 0.  (39) 

Following Klotz, we choose, without loss of generality, 

ao = bo = -1, 

so that (39) is 

(P  + P)B’+fP’/P = 0. (41) 

Now Klotz (1978b) has shown that (35) implies (with (40)) that 

p’  + fB’ - @ p ‘ / p  = 0 y ’ -  yoa(ln yV)’ = 0 wB’ = 0. (42) 

From the first of these, 

B’ = (P ’ / fP ) (P  - P I ,  

(P + P)B’ = (P ’ / fP ) (P2  - P 2 )  = --P’f/P, 

whence 

because of the definitions (33). But this is precisely (41). The second condition (38) is 
thus already contained in (42). 

From (34) and the first of (38), we have one condition, 

wp’=O 

beyond (42). If w is not zero, then p’  must be; but this conflicts with the field equation 
(Klotz 1978b, equation (32)) 

(pp’/2ap)’+;(ln ay ) ’ (~p’ /2ap )  - 1 = 0 ,  

which holds if w is not zero. Thus we finally see that, in this case, our metric 
identification differs from that proposed by Klotz only in that now w must of necessity 
be zero. 

Among all the solutions of (28) (found by Vanstone (1962)) corresponding to the 
fundamental tensor (32), Klotz found only two which were compatible with (42). One 
of these, an electric solution, had w equal to zero; the other solution, which corresponds 
to a spherically symmetric magnetic field, did not. With the metric identification (29), 
then, the non-symmetric theory admits a unique spherically symmetric static solution, 
which coincides precisely with the Klotz electric solution and the associated cosmology 
(see Klotz 1978a). There exist no magnetic solutions of this type whatever. 

The magnetic solution admitted by (22) involves an inverse fifth power, a fact which 
complicates its physical interpretation. Nevertheless, it seems clear that the most 
natural interpretation of this solution is that it corresponds to some kind of ‘magnetic- 
ally charged’ particle. It is of course conceivable that such a particle exists: indeed, in 
the absence of further solutions for which the above process can be carried out, the 
demonstration of its existence is the only empirical means whereby (22) and (29) may be 
distinguished. However, it must be admitted that the weight of experimental evidence 
is against the existence of particles of this type. In the view of the present author, this 
should be regarded as an advantage of (29) over (22). 
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7, Transposition invariance 

Thus far, we have presented the non-symmetric theory as being founded exclusively on 
the variational principle (23). Einstein (1954) himself would appear to have been 
reluctant to proceed in this manner; his primary guide was the principle of ‘trans- 
position invariance’, which may be described as follows. 

The transposition conjugate of a quantity 

UP, = uPu(g,”, f3 

UPU+ = Uup(g,,, F 3 .  
is 

By requiring that all relations should be invariant under such a substitution, Einstein is 
able suitably to restrict the range of acceptable field equations. The physical motivation 
for imposing this principle is the expectation that charge conjugation invariance should 
be reflected in some formal symmetry of the theory. It is clear that this relatively vague 
physical motivation permits considerable latitude as to the precise manner in which the 
principle of transposition invariance is to be interpreted. Most importantly, we do not 
know whether to require transposition invariance with respect to the conjugation of g,, 
and FEv only; it would be possible to require it also with respect to the conjugation of 
other quantities, such as the metric. The former requirement will be referred to as the 
‘weak’ and the latter as the ‘strong’ principle of transposition invariance. 

Let us, for the present, adopt the strong form of the principle. Then, because 

aoralLv - a,,i=P,, - aFPrpVor = o 
is not in general compatible with (29) (from which it is derived by transposition 
conjugation), it follows that our proposed metric identification is not transposition 
invariant in this sense. 

If one places, as did Einstein, more emphasis on transposition invariance as a guide 
in the selection of field equations than on the variational principle, then one may be 
willing to step outside the framework of the latter to some extent. Let us, therefore, 
investigate some immediate modifications of (29) which bring it into accord with the 
‘strong’ principle of transposition invariance. One possibility is to reverse the indices of 
FE, in the third term of (29), so obtaining 

aaaFv -ap,f:,- a,,fP,, = 0. (43) 

Adding and subtracting a term a,,fP,,, and denoting 
* 
s,ay = rev1, 

we have 

whence clearly 
* 
S[,,Ior = 0. 

From the definition, 

(44) 

(45) 
* .. 

S,”, = -sa,,, 
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so that from (44) - * 
S,”, = -&a,. 

Symmetrising now over p and v, the left side is (according to (44)) intact, while by (45) 
the right side becomes zero. Hence g,,,, is zero. The suggestion (43), then, would imply 
that f‘zv must always be symmetric, which is not acceptable. (For example, referring 
back to our discussion of the spherically symmetric case, it is easily seen from (34) that 

f&] = 0 

would imply B’ to be zero. But (36) still holds and still implies w to be zero. Klotz 
(1978b) has shown that, under these conditions, the theory collapses into general 
relativity. With (43), then, the theory would not possess any spherically symmetric 
static electric solutions.) 

The only other simple modification of (29) which suggests itself (from the point of 
view of ‘strong’ transposition invariance) is 

aaaWv - apufY,,) - azpi?av) = 0.  (22) 

But this is precisely the Klotz metric identification. The condition (22) may now be 
characterised as the simplest physically meaningful (‘strong’) transposition invariant 
modification of the results of the variational principle. If transposition invariance is 
placed on a logical par with the variational principle, then in a sense (22) may be said to 
be derivable from the latter (since this is true of (29)). 

The above discussion has been given only in order that (22) may be placed in the 
context of our efforts to derive the identification of the metric from the variational 
principle. This particular identification is seen to arise from the imposition of the 
‘strong’ form of transposition invariance. However, this latter appears to rest on a 
somewhat flimsy motivation. Let us discuss a more cogent basis for this invariance (see 
Einstein 1954, 1950). 

Given any connection rEv, and any vector V’”, it is easily shown that both of the 
formations 

a,vw + vprZp a,vF i- vpr;, 
are tensors. On this basis, Einstein (1954) argued that we should systematically treat 
r:v and r’& on an equivalent footing. This may be treated as a motivation for 
postulating 

a,glly - gPYf:, - g,,fZa = 0. (46) 

Let now g,,+ be the fundamental tensor corresponding to the transposed connec- 
tion, so that 

+ - p  dag,,+ - gp, rFa - g,,+f:, = 0. 

aagv,+ - g,, r - g,, Tal* = 0. 

gFv+ = g”w. 

Interchanging the dummy indices p and v, one finds 
+-  P + - P  

Comparison with (46) leads to 
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As all the quantities of the theory depend, through (46), on g,,, the logical equivalence 
of rz, and rz, may now be expressed through the demand of invariance with respect to 
the conjugation of g,, only. With this motivation, there is no justification for requiring 
invariance with respect to the conjugation of the metric tensor. The behaviour of aFV, 
the metric tensor, under the replacement of f’z, by pz, must be calculated from 

(see (29)). We cannot simply assume aF,+ to be equal to a,, ( =  a,v). In short, (29) is 
not incompatible with the ‘weak’ form of the principle of transposition invariance. 

We may summarise the situation as follows: the metric identifications (22) and (29) 
are those appropriate, respectively, to the ‘strong’ and ‘weak’ interpretations of 
transposition invariance. Equation (29) follows directly from the variational principle 
of the theory; this is not strictly true of (22). The latter is subject also to other criticisms. 
For example, (22) implies that a,“ is not a covariant constant with respect to FE,. In 
accordance with (1 1) and (6 ) ,  this means that rEv and FE,, do not coincide. Which, then, 
of 

f 

(if either) is to hold? It is far from easy to understand how one is to establish a basis for 
deciding this question. 

Ultimately, of course, the decisive issue is the empirical status of the magnetic 
solution admitted by (22) but not by (29). The verification of the existence of fields of 
this type would settle not only the question of the metric identification, but also that of 
whether the ‘strong’ or ‘weak’ interpretations of transposition invariance should be 
imposed. 

8. Conclusions 

The expression ‘metric identification’ is slightly misleading, since it gives one the 
impression that the ‘identification’ problem is similar for both gravitation and elec- 
tromagnetism. We have in fact good reason at the outset to associate gravitation with 
the metric tensor, and the latter has a meaning which is independent of any other entity. 
What is needed is a relationship between the metric and the affine properties of the 
manifold. It is conceivable that the variational principle of the theory may itself provide 
such a relationship. The present work shows that, with an appropriate view of 
non-Riemannian geometry, this can indeed be achieved, the result being 

If we impose a ‘strong’ form of the principle of transposition invariance, (29) must be 
modified to 

as proposed previously by Klotz (1978b). In the spherically symmetric case, (22) and 
(29) admit an electric solution which is identical for both; but (22) also admits a 
magnetic solution, which is ruled out in the case of (29). 
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